FCC Unit Evaluation Practices

Alan Sweezey, Executive Account Manager
FCC Unit Evaluation Practices

Overview:

- Refinery FCC Unit Monitoring Practices
- Industry Catalyst Selection Methodology
- Laboratory Catalyst Evaluation Techniques
 - Deactivation
 - Testing
 - Data Evaluation / Scale-Up

July 12, 2012
Regular FCC Unit Monitoring Practices

- Determine and document actual Unit Operation / Results
 - Routine Mass Balances
 - Test Runs
- Compare Feedstock Quality with Baseline
- Compare Actual Operation with Unit Limits
Determine Actual FCC Unit Results
Routine Balances are Critical

Regular Unit Monitoring Has Two Parts:

1. Unit Mass Balances
 Determine flow rates for feedstock and products
 Determine densities / compositions of streams
 Typically calculated daily or weekly

2. Unit Test Runs (or Base Case)
 Involves close monitoring of unit for set period of time (>24 hr)
 Requires additional resources for operations and laboratory analyses
 Conducted as needed for more exact evaluation of unit operation and product yields – at least once per year
Regular (Daily/Weekly) FCC Unit Mass Balance Procedures

- **Most Basic Effort Provides**
 - Rough material balance (at plant cut points, etc.)
 - Non-normalized product yields
 - Mass closure target +/- 2%

- **Recommended Balance Provides**
 - Flows corrected for temperature, density, cut points, composition
 - Heat balance & catalyst circulation
 - Detailed feedstock quality evaluation

- **Review trends for evaluation & operating adjustments**
Planned Unit Test Runs = The “Gold Standard” of FCC Evaluation

- Stable unit operation over a day with consistent feedstock quality & without side streams
- Complete Feedstock Analysis
- Complete heat balance & catalyst circulation
- Normalized product yields “as produced”
- Product yields at standard cut points / components

This level of evaluation is required to begin a unit or catalyst evaluation or to review catalyst changes
Base Case Test Runs – Example of Results

FCC-SIM SUMMARY

<table>
<thead>
<tr>
<th>Net Profit</th>
<th>462861 $/day</th>
<th>S/day</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Profit</td>
<td>18.5144 $/bbl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Num</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run Time</td>
<td>39763.3 LMT</td>
<td>39763.3 LMT</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT YIELDS

<table>
<thead>
<tr>
<th>wt % FF</th>
<th>vol % FF</th>
<th>lb/hr</th>
<th>bbl/d</th>
<th>FOE, vol % PRICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>0.0325</td>
<td>107.931</td>
<td>0.1841</td>
<td>4.41 $/MMBtu</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>0.7938</td>
<td>268.311</td>
<td>142.785</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>0.1259</td>
<td>418.144</td>
<td>2.9792</td>
<td>4.41 $/MMBtu</td>
</tr>
<tr>
<td>Ethane</td>
<td>1.1799</td>
<td>392.119</td>
<td>2.6502</td>
<td>4.41 $/MMBtu</td>
</tr>
<tr>
<td>Ethylene</td>
<td>0.9974</td>
<td>331.477</td>
<td>2.2249</td>
<td>0 $/lb</td>
</tr>
<tr>
<td>Propane</td>
<td>1.9438</td>
<td>3.4958</td>
<td>645.99</td>
<td>87.344</td>
</tr>
<tr>
<td>Propylene</td>
<td>4.369</td>
<td>7.642</td>
<td>145.198</td>
<td>191.05</td>
</tr>
<tr>
<td>N-Butane</td>
<td>0.7182</td>
<td>1.1216</td>
<td>2386.86</td>
<td>280.395</td>
</tr>
<tr>
<td>Isobutane</td>
<td>4.8239</td>
<td>7.8202</td>
<td>1603.15</td>
<td>1955.06</td>
</tr>
<tr>
<td>1-Butene</td>
<td>0.5544</td>
<td>0.8414</td>
<td>1842.33</td>
<td>210.352</td>
</tr>
<tr>
<td>C-2-Butene</td>
<td>0.462</td>
<td>0.6699</td>
<td>1535.28</td>
<td>167.845</td>
</tr>
<tr>
<td>T-2-Butene</td>
<td>0.7853</td>
<td>1.1714</td>
<td>2609.97</td>
<td>292.844</td>
</tr>
<tr>
<td>Isobutene</td>
<td>0.8266</td>
<td>1.2528</td>
<td>2747.01</td>
<td>313.198</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.0453</td>
<td>0.0659</td>
<td>150.687</td>
<td>16.4658</td>
</tr>
<tr>
<td>Light Naphtha</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Medium Naphtha</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Total Naphtha</td>
<td>49.892</td>
<td>61.1501</td>
<td>165829</td>
<td>1910.5</td>
</tr>
<tr>
<td>Light LCO</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Heavy LCO</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Light Cycle Oil</td>
<td>13.3574</td>
<td>12.7531</td>
<td>44391.3</td>
<td>3188.27</td>
</tr>
<tr>
<td>Heavy Cycle Oil</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Clarified Oil</td>
<td>11.5724</td>
<td>10.0683</td>
<td>38459.1</td>
<td>2517.08</td>
</tr>
<tr>
<td>Coke</td>
<td>6.3806</td>
<td>21204.8</td>
<td>68.4 $/lb</td>
<td></td>
</tr>
<tr>
<td>Total Products</td>
<td>100</td>
<td>108.053</td>
<td>332335</td>
<td>2701.3</td>
</tr>
<tr>
<td>HEAT OF CRACKING</td>
<td>196.965 Btu/lb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FRESH FEEDS

<table>
<thead>
<tr>
<th>Cost</th>
<th>$/bbl</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>HTR Btm TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>----</td>
<td>Feed 1</td>
<td>Feed 2</td>
<td>Feed 3</td>
<td>FEED 4</td>
<td>FEED 5</td>
<td>HTR Btm FCC BLEND</td>
</tr>
<tr>
<td>Total Rate</td>
<td>bbl/d</td>
<td>25000</td>
<td>VGO</td>
<td>25000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gravity</td>
<td>°API</td>
<td>23.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TBP 10% Point</td>
<td>°F</td>
<td>600.957</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TBP 50% Point</td>
<td>°F</td>
<td>810</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TBP 90% Point</td>
<td>°F</td>
<td>966</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur</td>
<td>wt %</td>
<td>1.92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basic Nitrogen</td>
<td>wt %</td>
<td>0.0619</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RISERS

Feed Rate	bbl/d	1	2	25000	----
Feed Temperature	°F	1321.62	----	----	
Inlet Mix Tempera	°F	1348.39	----	----	
Outlet Temperatu	°F	1321.62	----	----	
Cat/Oil Ratio	wt/wt	6.3806	1288.96	0.024	
CCR	ton/min	18.9938	----	----	
Steam Rate	lb/hr	700	----	----	
Lift Gas	MSCFH	0	----	----	
HC Vaporization	wt %	100	----	----	
Residence Time	seconds	5.6761	----	----	
Inlet Velocity	ft/s	11.7632	----	----	
Heat of Cracking	Btu/lb	196.965	----	----	

REGENERATORS

Bed Temperature	°F	1321.62	----	----
Flue Gas Temperature	°F	1348.39	----	----
Flue Gas CO2 vol %	15.6615	----	----	
Flue Gas CO vol %	1.3895	----	----	
Flue Gas O2 vol %	1.4996	----	----	
Total Air Rate	MSCFH	3774.34	----	----
CRC	wt %	0.024	----	----
Bed Cooling	MMBtu/h	0	----	----
Flue Gas Flow Rate/lb/hr	306.81	----	----	
Superficial Velocity	ft/s	1.6415	----	----

CATALYST

Activity	Mat %	80	----	77
Surface Area	m2/g	275	136.145	----
Nickel	ppmw	0	128.669	----
Vanadium	ppmw	0	722.016	----
Sodium	ppmw	0	0	----
Make-up Rate	t/d	10.8806	----	----
ZSM 5 Content	wt %	0	----	----
Zeolite Content	wt %	----	----	----
Rare Earth Content	wt %	----	----	----
Alumina Content	wt %	----	----	----

BASF

The Chemical Company

July 12, 2012
Using Mass Balance / Test Run Results

- Compare actual product yields, & results vs. targets
- Determine the actual unit temperatures/flows compared to process limits (regenerator temperature, catalyst circulation, wet gas compressor flow, air flow, etc.
- Model feedstock quality to determine effects on performance
- Document Test Run Results
- Adjust operating variables, catalyst / additive addition to optimize results within process limits
Potential Test Run Problems

- Time and resources – unit engineer with experience
- Preliminary unit balance not done
- Flow instruments not “zeroed” / calibrated beforehand
- Missing / inconsistent data
- Operation not steady state for 1-2 days
- Laboratory evaluation / sampling problems
- Feedstock changes
Catalyst Selection & Evaluation Methodology

- Technical efficacy of catalyst is settled in several ways:
 - **Paper Study** – supplier provides yield projections of proposed catalyst compared to a base case technology
 - **Commercial References**
 - **Unit trials** – refiners support back to back trials between different catalyst technologies or different catalyst vendors
 - May follow up with post-audit testing with e-cats
 - **Catalyst Laboratory Testing** – internal or external laboratories request fresh catalyst samples. Samples are deactivated and evaluated in lab scale or pilot scale reactors.
 - Often refiners will use a combination of these approaches
FCC Catalyst Selection
Paper Studies and Commercial References

- Paper Studies
 - supplier provides yield projections of proposed catalyst off of a base case technology

- Commercial References for technologies unfamiliar to refiner are often requested

- Pros:
 - Quick, low-cost approach

- Cons:
 - Higher risk
 - Level of inaccuracy for non-incumbent suppliers due to less familiarity of base case
FCC Catalyst Selection
Unit Trials and Post-Audit Assessment

- Refiners support back to back trials between different catalyst technologies
- Analyzing unit data from trials is not always conclusive
 - Feed / operating changes, mass balance issues, etc.
- Laboratory support testing
 - Routine Ecat monitoring
 - Directed testing on unit feed
- Reaction Mix Sample (RMS) testing before & after catalyst change is gaining acceptance
56% of FCCs perform some measure of catalyst testing

- 55% use laboratory scale testing: MAT, ACE and SCT-RT
 - Bulk of this is ACE testing – “Advanced Cracking Evaluation”
- 45% use pilot scale testing: DCR, Arco, internal design

- Catalyst deactivation protocols are highly varied
 - 5% hydrothermal steaming
 - 35% metals impregnation techniques
 - 60% crack on metals

(\% of laboratories – may not always use depending on unit specifics)
Laboratory Catalyst Evaluation Techniques

- Deactivation objective = mimic properties of unit equilibrium catalyst
 - Hydrothermal Steaming - deactivates zeolite
 - Metals impregnation or deposition: (V and Ni species)
 - Many permutations & combinations

- Testing (Cracking)
 - Bench scale – MAT or ACE or SCT-RT
 - Circulating pilot unit

- Data evaluation & scale up
A Suggested Catalyst Deactivation Matrix

Average Metal Concentrations on 126 E-cats

CMDU* catalyst withdrawal

CMDU fresh catalyst addition to mimic Ni aging

E-cat Vanadium Concentration

E-cat Nickel Concentration

Hydrothermal Steaming

Mitchell Impregnation

* Cyclic Metal Deactivation Unit
Example of SEM w/ EDS line scans

Lab Prepared Sample With Impregnated Metals

Commercial E-Cat
Catalyst Deactivation – Contaminant Metals Loading Procedures

CPS: Cyclic Propylene Steaming

- Wet metal impregnation – Mitchell Impregnation
- Redox cycle deactivation \rightarrow C3H6 \rightarrow steam \rightarrow air
- Pros: Faster and more control with total metal deposition
- Cons: Not representative of e-cat metals distribution.

CMDU: Cyclic Metals Deactivation Unit

- Metals added during the cracking cycle
- Redox cycle: cracking \rightarrow regen \rightarrow steam
- Pros: Best model of FCC metal depositio
- Cons: Time / Capacity
Laboratory Catalyst Evaluation
One Example Strategy

- Philosophy for Simulating E-cat in the Laboratory
 - Match H₂ and contaminant coke, NOT metal levels
 - The amount of dehydrogenation that occurs commercially is low
 - Commercial H₂ yield is consistent from unit to unit, 0.15-0.30 wt%

- Rule of thumb for Cyclic Metal Deposition metal levels
 - 25-35% of E-cat nickel
 - 40% of E-cat vanadium
Ecat Results vs. Lab Testing Procedures
How Results Compare

Catalyst metals approx. 1700 ppm V and 800 ppm Ni

Constant C/O of 5

Catalyst metals approx. 1700 ppm V and 800 ppm Ni
Metal Effects on Catalyst Activity/Selectivity
Lab Evaluations are Complex

- Metal dispersion contributes to activity
 - Lab application affects metal dispersion
 - All laboratory techniques exaggerate metal activity
 - Impregnation is the worst
 - Catalyst properties affect metal dispersion
 - High porosity increases metal dispersion in the laboratory
 - No influence on commercial performance
 - A laboratory artifact!

- Metal Age
 - Normal deactivation conditions reduce metal activity = fn(x) (time & temperature)
 - Oxidation – Reduction cycles further reduce metal activity
Elements of Laboratory Catalyst Evaluations

- Deactivation – mimic properties of unit equilibrium catalyst
 - Hydrothermal Steaming - deactivates zeolite
 - Metals impregnation or deposition: (V and Ni species)
 - Many permutations & combinations

- Evaluation
 - Bench scale – ACE, MAT, or SCT-RT
 - Circulating pilot unit
 - Data evaluation & scale up
FCC Catalyst Performance Assessment – from Research to Commercial Application

New Catalyst/Additive R&D

ACE® Reactor

Scale:
Catalyst: 9 - 12 g
Feed: 10 - 20 g
BASF Capability: 5 units

Pilot Circulating Riser Unit

2500 g
0.2 barrel/day
Under construction

Commercial FCC Unit

100+ tons
10,000 + barrels/day
None

BASF Capability:
5 units
Under construction
None
ACE (Advanced Catalyst Evaluation) Fluidized Laboratory Reactor

• ACE® lab scale testing apparatus for FCC catalyst evaluation:
 - Fixed Fluid Bed (FFB) design.
 - Uniform temperature and coke distribution.
 - Automated design allows for quick turnaround time.

• Can be used to troubleshoot & optimize FCCU
 - Flexible and resid capable
 - simulates unit yields

• Excellent precision
Schematic and Process Flow Streams of BASF Circulating Riser Unit
Laboratory Results to Commercial “Data Evaluation & Scale Up”

Laboratory results are not heat balanced

Use laboratory product yields with process simulation model tuned for each FCC unit

Determine expected commercial yields

These processes are complicated – can take over a decade to refine
Summary

- Regular mass balances/test runs are required to properly evaluate the FCC unit operation.
- FCC feed quality and process limits, not the catalyst properties, normally determine the commercial product yields.
- Test Run results should be used with the FCC process limits to optimize the refinery operation.
- Several laboratory catalyst evaluation techniques are available, depending on the unit feedstock quality and operation.
 - Which techniques and how to use are a key knowledge base.
Summary

- Catalyst Deactivation is critical to laboratory testing results
 - Mimicking Ni and V levels in testing are subject to artifacts
 - Unrealistic metals distribution and activity
 - Porosity artifacts
 - CMDU deactivation preferred → target e-cat yields, NOT metal levels
- Catalyst evaluation can be achieved in the lab scale (ACE) or even better in a circulating pilot plant
- BASF has full testing and deactivation capability to service the FCC industry and continue to be a technology leader.